

# QubeCL System specifications sheet

### 1 Introduction to QubeCL System

#### 1.1 Features

- Current noise spectral density < 500 pA $/\sqrt{\text{Hz}}$
- Integrated current noise [10-1000 Hz] < 500 nA<sub>RMS</sub>
- Current temperature coefficient better than 5 ppm<sub>FS</sub>/°C
- High current rating up to 2.5 A
- High voltage compliance up to 17.5 V
- Capable of precision modulation from 10 nA
- Fast modulation up to 10 mA @ 2 MHz
- High modulation up to 200 mA @ 600 kHz
- Expansion modules: Temperature stabilization, Lock-in, PLL, Pound-Drever-Hall

### 1.2 Typical applications

- Precision gas spectroscopy
- Locking laser to molecular transition
- Locking laser to high-finesse cavity
- Metrological-grade laser frequency stabilization

### 1.3 General Description

The QubeCL System is a high-performance environment particularly suited to drive state of the art Quantum Cascade laser (QCL) sources, but it can drive any kind of semiconductor laser. The expansion modules allow you to customize the system, obtaining a high-performance instrument in a  $10x10~\rm cm^2$  footprint. The system is designed to minimize external wiring and enclose susceptible connections inside its frame, thus reducing noise coupling and maximizing performance.



# 2 Specifications

| Interface | Mode                | Settings              | Notes |
|-----------|---------------------|-----------------------|-------|
| USB       | Virtual Serial Port | 115200 8N1            |       |
| WiFi      | Access Point/Client | software configurable |       |

 Table 1: Communication Interfaces

| Parameter                                         | Values     | Unit | Notes               |
|---------------------------------------------------|------------|------|---------------------|
| Operating temperature                             | -20 to +40 | °C   |                     |
| Storage temperature                               | -20 to +70 | °C   |                     |
| Main power supply voltage (PS <sub>LAS</sub> )    | 26         | V    | No terminal must be |
| TEC power supply voltage (PS <sub>TEC</sub> )     | 26         | V    | connected to ground |
| Monitor power supply voltage (PS <sub>MON</sub> ) | 5.5        | V    | connected to ground |
| Modulation inputs                                 | ±10        | V    |                     |

Table 2: Absolute Maximum Ratings



### 3 Electrical Specifications

 $PS_{LAS}\!=\!24~V_{dc},~PS_{TEC}\!=\!12~V_{dc},~PS_{MON}\!=\!5~V_{dc},~Warm\text{-up time }120$  min, room temperature 25 °C, unless otherwise noted.

| Parameter               | Min | Тур  | Max | Unit                  | Notes              |
|-------------------------|-----|------|-----|-----------------------|--------------------|
| Noise spectral density  | 100 | 200  | 500 | $pA/\sqrt{Hz}$        | test current 200mA |
| Integrated noise        | 50  | 100  | 200 | $nA_RMS$              | 10 Hz - 100 kHz    |
| Integrated noise        | 250 | 350  | 500 | nA <sub>RMS</sub>     | 10 Hz - 1 MHz      |
| Stability (1h)          | 4   | 5    | 6   | ppm <sub>FS</sub>     |                    |
| Stability (12h)         | 5   | 6    | 7   | $ppm_FS$              |                    |
| Temperature coefficient | -2  | -3   | -5  | ppm <sub>FS</sub> /°C |                    |
| Voltage compliance      |     | 17.5 |     | V                     |                    |

 Table 3: Current Generator Specs

| Parameter                | Min | Тур  | Max       | Unit           | Notes         |
|--------------------------|-----|------|-----------|----------------|---------------|
| Analog input voltage     | 0   |      | ±10       | V              |               |
| DC offset                | 20  | 30   | 50        | μΑ             | input shorted |
|                          |     | Lov  | w current | t              |               |
| Noise spect. dens. floor | 50  |      | 100       | $pA/\sqrt{Hz}$ | input shorted |
| Output current           | 0   |      | ±5        | mA             |               |
| Gain                     |     | -0.5 |           | mA/V           |               |
| Modulation BW (-3 dB)    |     | 2    |           | MHz            |               |
|                          |     | Hig  | h curren  | t              |               |
| Noise spect. dens. floor | 200 |      | 2000      | $pA/\sqrt{Hz}$ | input shorted |
| Output current           | 0   |      | $\pm 100$ | mA             |               |
| Gain                     |     | -10  |           | mA/V           |               |
| Modulation BW (-3 dB)    |     | 600  |           | kHz            |               |

Table 4: Analog Current Modulators Specs



| Parameter                | Min       | Тур  | Max             | Unit           | Notes         |  |  |
|--------------------------|-----------|------|-----------------|----------------|---------------|--|--|
| Waveforms                |           | Sine | or Trian        | gle            |               |  |  |
| Freq. range              | $10^{-3}$ |      | 10 <sup>6</sup> | Hz             |               |  |  |
| Min freq. step           |           | 250  |                 | mHz            |               |  |  |
| Amplitude control res.   |           | 12   |                 | bits           |               |  |  |
| DC offset                | 20        | 30   | 50              | μΑ             | input shorted |  |  |
|                          |           | Low  | current         |                |               |  |  |
| Noise spect. dens. floor | 50        |      | 100             | $pA/\sqrt{Hz}$ | input shorted |  |  |
| Output current           | 0         |      | ±2.5            | mA             |               |  |  |
| Modulation BW (-3 dB)    |           | 2    |                 | MHz            |               |  |  |
| High current             |           |      |                 |                |               |  |  |
| Noise spect. dens. floor | 200       |      | 2000            | $pA/\sqrt{Hz}$ | input shorted |  |  |
| Output current           | 0         |      | ±75             | mA             |               |  |  |
| Modulation BW (-3 dB)    |           | 600  |                 | kHz            |               |  |  |

 Table 5: Mixed Current Generator Specs - Digital

| Parameter                   | Min | Тур | Max       | Unit   | Notes         |
|-----------------------------|-----|-----|-----------|--------|---------------|
| Analog input voltage        | 0   |     | ±2.5      | V      |               |
| DC offset                   | 20  | 30  | 50        | μΑ     | input shorted |
|                             |     | L   | ow curre  | nt     |               |
| Noise spect. dens.<br>floor | 50  |     | 100       | pA/√Hz | input shorted |
| Output current              | 0   |     | ±2.5      | mA     |               |
| Gain                        |     | -1  |           | mA/V   |               |
| Modulation BW (-3 dB)       |     | 2   |           | MHz    |               |
|                             |     | Н   | igh curre | nt     |               |
| Noise spect. dens.<br>floor | 200 |     | 2000      | pA/√Hz | input shorted |
| Output current              | 0   |     | ±75       | mA     |               |
| Gain                        |     | -30 |           | mA/V   |               |
| Modulation BW (-3 dB)       |     | 600 |           | kHz    |               |

Table 6: Mixed Current Generator Specs - Analog



| Parameter          | Min | Тур | Max  | Unit | Notes                 |
|--------------------|-----|-----|------|------|-----------------------|
| Thermistor         | 1   |     | 10   | kΩ   | NTC                   |
| TEC current        |     |     | ±3   | А    |                       |
| TEC compl. voltage |     | 20  |      | V    |                       |
| Temp stability     |     | 40  | 400  | μK   | absolute stability in |
|                    |     |     |      |      | 12h                   |
| Temp. coefficient  |     | -90 | -100 | μK/K |                       |

 Table 7: Temperature Controller Specs

| Parameter        | Min | Тур | Max | Unit | Notes |
|------------------|-----|-----|-----|------|-------|
| RF freq. input   | 10  |     | 250 | MHz  |       |
| LO freq. input   | 10  |     | 100 | MHz  |       |
| Input level      | -30 |     | 0   | dBm  |       |
| Input stage gain | 0   |     | 30  | dB   |       |
| Lock bandwidth   |     |     | 800 | kHz  |       |

 Table 8: PLL Module Specs

| Parameter      | Min | Тур | Max | Unit | Notes |
|----------------|-----|-----|-----|------|-------|
| RF freq. input | 1   |     | 100 | MHz  |       |
| LO freq. input | 1   |     | 100 | MHz  |       |
| RF Input level | -30 |     | 0   | dBm  |       |
| LO Input level |     | 5   |     | dBm  |       |
| Lock bandwidth |     |     | 800 | kHz  |       |

 Table 9: Pound-Drever-Hall module Specs

| Parameter            | Min | Тур   | Max   | Unit          | Notes |
|----------------------|-----|-------|-------|---------------|-------|
| Modulation frequency |     | 32768 |       | Hz            | fixed |
| Ramp frequency       | 1   |       | 1000  | Hz            |       |
| Input voltage noise  |     | 30    |       | $\mu V_{RMS}$ |       |
| Input stage gain     | 0   |       | 60    | dB            |       |
| Integration time     | 1   |       | 10000 | ms            |       |
| Lock bandwidth       |     |       | 1     | kHz           |       |

Table 10: Lock-In module Specs



## 4 Typical performance characteristics

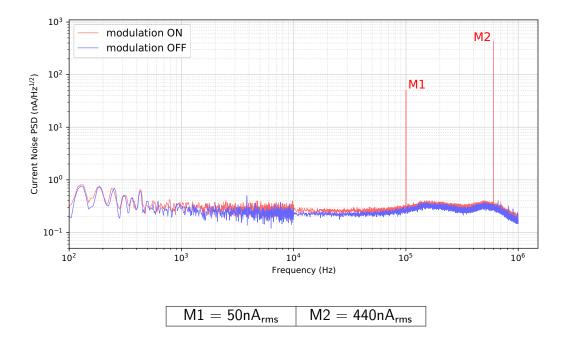



Figure 1: Current noise spectral density comparison with low current modulator

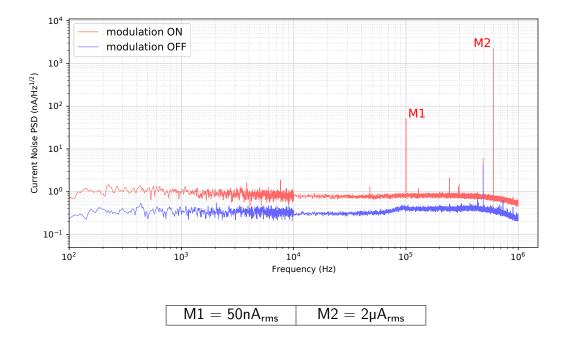



Figure 2: Current noise spectral density comparison with high current modulator



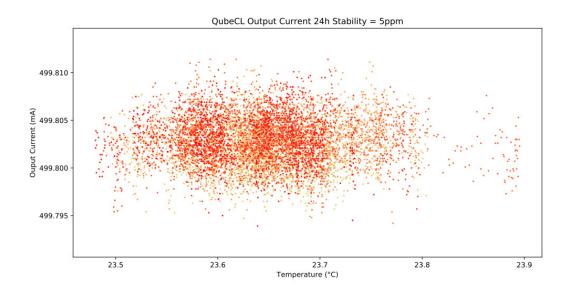



Figure 3: 24h Current stability over ambient temperature

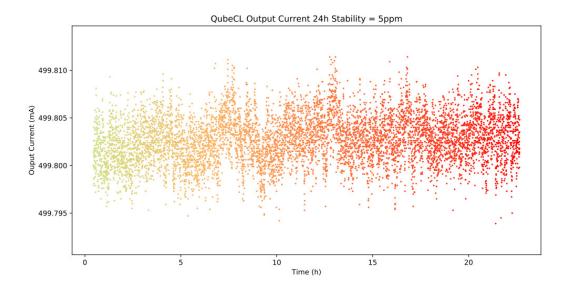



Figure 4: 24h Current stability over time



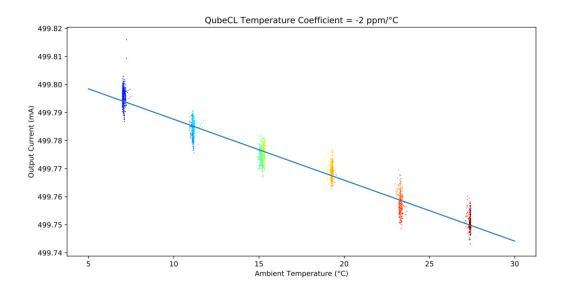



Figure 5: Current temperature coefficient



### 5 Current Modulators

The system has two type of current modulators designed to meet the most common needs in terms of modulation. There are two modulation ranges:

- The low current range allows to add to the laser even small currents, down to tens of nA, with a high level of precision and very low added noise.
- The High Current range allows to add currents up to hundreds of mA to perform large laser frequency scans.

The modulators have a negative gain. If we denote the modulation current with  $I_{mod}$ , the input control voltage  $V_{in}$  and the absolute value of the gain in mA/V with G, the modulation current is equal to:

$$I_{mod} = -G \cdot V_{in}$$
.

This means that a positive control voltage will subtract current to the laser bias current, and a negative control voltage will add it.

#### **CAUTION**

The high current modulator can provide currents up to 100 mA which can be added or subtracted to the bias current of the laser.

Using negative control voltages the modulation current is added to the bias current, in this case the total current may exceeding the maximum current allowed by the laser. Therefore it is necessary to be very careful to avoid the risk of damaging the laser itself.

Conversely, using positive control voltages it is possible to use the high current modulator safely, because the modulation current is subtracted from the laser bias current.



### 6 Power instructions

### 6.1 Power supply requirements

The system needs three power supplies:

- The power line called PS<sub>LAS</sub> has a typical value of 24V and it's used to power the laser driving electronics.
- The power line called  $PS_{TEC}$  has a typical value of 12V and it's used to supply the power circuitry for temperature stabilization.
- The power line called  $PS_{MON}$  has a typical value of 5V and it's used to power the monitor outputs of some boards.

All the voltages used to power the QubeCL must be floating, i.e., they must not be referred to ground. QubeCL can be powered using common stabilized linear power supplies, the use of switching power supplies can degrade the noise characteristics of the system.

| DC         | Min | Тур | Max | Curr. |
|------------|-----|-----|-----|-------|
| input      | [V] | [V] | [V] | [A]   |
| $PS_{LAS}$ | 19  | 24  | 26  | 3     |
| $PS_{TEC}$ | 8   | 12  | 26  | 3     |
| $PS_{MON}$ | -   | 5   | 5.5 | 0.5   |

 Table 11: Power Supply Reference

#### **CAUTION**

Be sure to use a FLOATING DC power supply to electrically drive QubeCL system. The power supply terminals must not be connected to ground. Connecting any terminal to ground will damage the instrument!